NUMERICAL SIMULATION ANALYSIS OF ENERGY DISSIPATION CAPACITY OF CORRUGATED STEEL PLATE UNDER TENSION AND COMPRESSION

Under tension and compression, the wave crest and wave trough plastic zone of corrugated steel plate (CSP) have strong energy dissipation ability, but so far, the research on improving the energy dissipation capacity of building structure is very rare. To investigate behavior of the CSP, twelve models that consist of one to four folds with steel Q345B and Q235B, were simulated by using the finite element method. The numerical parameters varied in these models included geometries and materials of the corrugated steel plates. The results show that the CSP exhibits stable hysteretic behaviors, satisfactory energy dissipation capacities, large deformation and ductility capacity. Moreover, a method for estimating internal forces, yield displacement, yield load and stiffness of the CSP was derived and the derived equations provide reasonable predictions and shows agreement with theoretical values so can be used for future design. Based on the results, the parameter values of CSP that suitable for energy dissipation of building structures were suggested.

$2.00Add to Cart

Erjun WU, Azarkhosh Hojatallah, Guangdong Zhou