• Special Issues
  • LOCALIZATION OF DAMAGE OCCURRED ON FRAMED STRUCTURES: ANALYSIS OF THE GEOMETRIC CHARACTERISTICS OF THE FUNDAMENTAL MODE SHAPE

    Damage detection techniques based on data acquired using permanent and/or temporary monitoring systems directly installed on structures, and/or infrastructures, have received a significant attention in the recent scientific literature. The recourse to experimental methods it is necessary also with the aim to characterize the seismic linear and nonlinear behaviour of real structures excited by earthquakes. Structural Health Monitoring (SHM) systems provide also the possibility to better understand the effects of the dynamic soil-structure interaction, together with the role played by the non-structural components on both linear and nonlinear behaviour of the monitored structure. A new methodology for damage detection and localization on framed structures, based on the maximum modal curvature variation related to the fundamental mode of the monitored structure, is proposed in this paper. Particularly, the main outcomes retrieved from several numerical nonlinear dynamic models, and from several shaking table tests, performed at the University of Basilicata using a scaled framed model, have been discussed.

    $2.00Add to Cart

  • Uncategorized
  • An index for a timely seismic damage detection

    This paper presents a new seismic damage index feasible for automatic damage detection approaches. The definition is based on a new approach to damage detection based on the comparison between the accuracy of a given shape function in interpolating the response of a structure, in the damaged and the undamaged (reference) states. The comparison is carried out in terms of an error function defined as the difference between responses recorded on the structure and responses calculated via the spline interpolation. The variations of the error with respect to the reference value report the existence of damage in the region of the structure close to the locations where the higher changes occur. The method has been tested on the numerical model of a multistorey frame where damage has been simulated as a storey stiffness reduction. Results relevant to several damage scenarios show that the method allows both the detection and the localization of damage with a level of accuracy that increases with the intensity of damage. The application of the method requires a densely instrumented structure and the availability of responses recorded before and after a damaging event. The main advantages of the proposed method are that it does not require a numerical model of the structure nor heavy post-processing of recorded data. Hence, after a damaging earthquake, it can provide, nearly in real time, reliable information about the location of damage. These characteristics make the method a potentially useful tool for automated post-earthquake damage assessment.

    For this paper is available an extended abstract after the text in Italian